Course Outline

1) General

SCHOOL	SCIENCE				
DEPARTMENT	CHEMISTRY				
DEGREE	MASTER				
COURSE CODE	18B7 SEMESTER Spring				
	Inorganic Complexes and Nanomaterials.				
COURSE TITLE	Applications as Medicines, Cosmetics and				
	Diagnostic		,		
INDEPENDENT TEACHI	DEPENDENT TEACHING ACTIVITIES				
in the case that the credits are awarded to separate parts of the			TEACHING		
course e.g. Lectures, Laboratory Exercises, etc. If the credits are			HOURS PER	CREDITS	
awarded uniformly for the entire course, enter the weekly			WEEK		
teaching hours and total credits					
			7	10	
Add lines if necessary. The teaching organization and methods used are described in detail in (d).					
COURSE TYPE	general back	ground, general	knowledge spe	ecialization	
general background,					
special background, general knowledae specialization, skill					
development					
PREREQUISITE COURSES:	Spring Semester Courses				
COURSE AND EXAM LANGUAGE:	GREEK				
IS THE COURSE OFFERED TO	It is offered if requested				
ERASMUS STUDENTS?					
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/CHEM259/				

(1) LEARNING OUTCOMES

LEARNING OUTCOMES

The learning outcomes, specific knowledge, skills and abilities of an appropriate level that the students will acquire after the successful completion of the course are described.

Consult Appendix A

• Description of the Level of Learning Outcomes for each course of study according to the Qualifications Framework of the European Higher Education Area

- Descriptive Indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Comprehensive Guide to writing Learning Outcomes

The aim of this course is to extend the basic principles of metal complexes and nanomaterials chemistry about the synthesis, properties and applications in the fields of health, pharmaceuticals and theranostics, based on specialized knowledge in Inorganic Chemistry. Discussion about the use of inorganic materials in cosmetics will be also performed. The expected learning outcomes are:

to be acquired through a combination of (i) reinforcement of knowledge and their development methodology through lectures, (ii) practice by analyzing examples of synthesis, analysis and expected properties interactively (iii) study of modern literature with an emphasis on both synthesis and analysis of properties.

Upon successful completion of the course, the student is expected to be able to:

1. Understand and explain the formation of metal complexes and factors affecting their stability and applications

2. Will be able to design and select appropriate substitutes for the desired application

3. Will be able to select appropriate oxidation states of metal ions as well as metal ions depending on the desired applications

4. Will be able to select appropriate experiments to study drug-target interaction at the molecular level.

5. Will be able to evaluate the above results.

6. Will be able to consolidate the categorization of nanomaterials (composition, size, shape, surface modification).

7. Will be able to understand and explain the role of nanoparticle characteristics in interactions with biological systems (pathways, toxicity, protein expression)

8. Will be able to plan and organize the development of nanoparticles according to the desired applications.

9. Will be able to organize the biological experiments which will examine materials interaction in biological systems

10. Will be able to explain and analyse metal ion-dependent properties of nanoparticles in the treatment of biological tissues (plasmonic resonance, hyperthermia and phototherapy)

11. Will be able to search the current literature on the domain and to improve their knowledge about the data that occurred. Knowledge

	1. Knowledge and understanding the role of metal ions in biological				
	systems 2. Applications of metal complexes or nanoparticles as theranostic agents				
	 Knowledge and understanding of improving cosmetic properties (sunscreens, creams) 				
	4. Knowledge and understanding of spectroscopic and physiometric				
	experiments aimed at evaluating the interactions of complex-target interactions at the molecular level				
	5. Knowledge and understanding of specific biological experiments in order to evaluate properties				
	Skills				
	 Skill in the design of complexes/nanoparticles in bioapplications Skill in the organization of appropriate synthetic methods for the regulation of nanoparticle characteristics 				
	3. Skill in the processing of results and analysis of various techniques in order to determine the characteristics of nanoparticles				
	4. Skill in selecting and organizing appropriate spectroscopic experiments				
	to determine the 'drug'-target interaction at the molecular level.				
•	5. Skill in selecting and organizing appropriate biological experiments to				
Genera	determine toxicity, biocompatibility and stability in biological fluids				
Taking ir	n skins nto account the general skills that the graduate must have acquired (as stated in the Diploma Appendix and listed which of the following is/are the course aimed at?.				
informat Adaptati Decision Independ Teamwo Working	lent work				
	motion of free, creative and inductive thinking				
	rch, analysis and synthesis of data				
	aptation to new situations				
3. Ada	up work				
3. Ada 4. Gro	oup work conomous work				
3. Ada 4. Gro 5. Aut	oup work conomous work neration of new research ideas				

The following points are discussed in the lesson:

- 1. Basic principles of Inorganic Biological Chemistry.
- 2. Synthesis methodology of metal complexes and nanomaterials with
- biological interest

 Design of ligands for the development of metal complexes with medicinal interest and multiple targets (e.g. anticancer and antimalarial)
 Study of drug-target interaction (DNA, proteins) at the molecular level using UV-vis, cyclic voltammetry, viscometry.
 Study of inorganic complexes and properties that developed according to the metal ion and the ligands (anticancer, hypertensive, antimicrobial, photodynamic therapy, oxidative stress, etc.)
 Study of inorganic nanoparticles and their properties according to the metal ion(s) (hyperthermia, phototherapy, oxidative stress)
 Classification of biological evaluation of the properties of the nanoparticles/complexes formed
 Description of the internalization pathways of nanoparticles and the methodology of their experimental investigation.
 Use of nanoparticles in cosmetology. Advantages-Risks

(3) TEACHING AND LEARNING METHODS – EVALUATION

LECTURES' DELIVERY				
In person, distance, etc	• Face to face (lectures)			
in person, distance, etc				
	 Modern distance education (guided study) 			
USE OF INFORMATION AND	In teaching:			
COMMUNICATIONS TECHNOLOGIES	 Additional education material (slides) in electronic 			
Use of I.C. T. in Lectures, Laboratory Exercises,	platform e-class.			
Communication with students	 Collaboration/lectures through Webex platform 			
	In communication with studer			
		ng procedure through the		
		e-class (announcements,		
		es, documents, user groups,		
	etc.) Email			
	Email			
TEACHING ORGANIZATION The teaching style and methods are described in	Activity	Semester workload		
detail.	Lectures	65		
Lectures, Seminars, Laboratory Exercises, Field	Guided study in relation to	26		
Exercises, Literature Study & Analysis, Tutorial, Internship (Placement), Clinical Exercises, Art	research task			
Workshop, Interactive Teaching, Educational	Non guided study	40		
Visits, Study Preparation (Project), Paper	Study and analysis of			
Writing Assignments, Artistic Creation, etc. etc.	literature-Elaboration of			
The student's study hours for each learning	study (project),	99		
activity as well as unguided study hours	Writing a paper and			
according to ECTS principles are listed	presentation	20		
	Assessment preparation	20 250		
	Total course	250		
	The second sectors for the	de alla ta da sa ta ora d		
STUDENT EVALUATION		dents is done in Greek		
STUDENT EVALUATION Description of the evaluation process	The evaluation of stue and includes:	dents is done in Greek		

Questions, Problem Solving, Written Assignment, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Clinical Patient Examination, Artistic Interpretation, Other / Others	 ii. problem solving iii. multiple choice questions evaluation of bibliographic work (project) and presentation,
Explicitly defined evaluation criteria are mentioned, and if and where they are accessible by students.	Course Grade Calculation: 60% exam grade and 40% assignment grade

(4) RECOMMENDED BIBLIOGRAPHY

- "Introduction to Nanoscale Science and Technology" J. Helfin Springer (2004)
- R. Ferrando, J. Jellinek, R. L. Hohnston, "Nanoalloys: from theory to applications of alloy clusters and nanoparticles", Chemical Reviews, (2008), 108 (3), 845-910
- R. A. Sperling, W. J. Parak, "Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles", Philosophical Transactions of the Royal Society A, (2010), 368, 1333–1383
- K. M. Krishnan "Biomedical Nanomagnetics: A spin through possibilities in imaging diagnostics and therapy" IEEE Transactions on Magnetics 2010; 46:2523-2558
- A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, "Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties", Advances in Colloid and Interface Science, (2016), 229, 80–10
- Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG, Thurber, Hanna, Punnoose, Zhang, Wingett. "The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction". Nanoscale Res Lett 2009; 4(12):1409–1420
- Biological Inorganic Chemistry, Structure and Reactivity, H. B. Gray, E. I. Stiefel, J. S. Valentine and I. Bertini, University Science Books, 2007.
- Bioinorganic Chemistry, D. Kesisiglou, G. Psomas, 2011
- Biological Inorganic Chemistry. A new Introduction to Molecular Structure and Function. R. Crichton, Elsevier Science, 2018 ISBN: 9780128117415.